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Background: Who care about AoI?

Age of Information (AoI): duration from the moment that the latest
content was generated to current reception time.

Today many customers do not want to lose any breaking news or
useful information in smartphone even if in minute.

Online content platforms (such as navigation and shopping
applications) aim to keep their information update fresh.
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Background: Crowdsourcing for reducing AoI

Crowdsourcing: To keep high sampling rate, platforms invite and pay
sensor-crowd to collect information updates. For example, GasBuddy
and crowdspark.

Both incur large sampling cost with high sampling rate.
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Research Questions

Economic Issue on AoI was largely overlooked in the literature.

Information supply: Platform crowdsourcing incur large sampling cost.

Tradeoff between AoI reduction & sampling cost hasn’t been studied.

Information delivery: More than one platform selfishly shares the
content delivery network.

Updates of platforms may preempt or jam each other.
Negative network externalities and competition between platforms.

How to best tradeoff between AoI reduction and sampling cost?

How bad is platform competition and how to enforce efficient
cooperation between selfish platforms?
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Related Work on AoI

Queueing analysis on average AoI estimation

Single link: Costa et al. (2016), Huang et al. (2015), Kaul et al.
(2012), Bacinoglu et al. (2015) and Sun et al. (2017).

Multi-hop networks: Bedewy et al. (2017).

Multi-source LCFS queue with preemption: Kaul et al. (2012).

Such work do not consider sampling cost or the tradeoff between AoI
reduction and sampling cost.

Scheduling broadcast channel among multiple sources for AoI to avoid
competition

Hsu et al. (2017). Bedewy et al. (2017).

Such work assumes sources/platforms will follow recommendation,
and do not consider selfish sources’ update competition over the
content delivery network.
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Related Work on Platform Competition

Selfish sharing under negative network externalities

Duopoly competition in network sharing: Gibbens et al. (2000),
Roughgarden et al. (2002), Duan et al. (2015).

Mechanism design to mitigate competition:

Direct pricing as penalty: Courcoubetis (2003), Varian (2004), though
difficult to enforce additional penalty on platforms here.

Repeated games approach with indirect punishment: Treust et al.
(2010), Xiao et al. (2012), Lanctot et al. (2017), which requires
complete information and sufficiently large discount factor to work.

We will

investigate how to regulate platform competition under incomplete
information.

propose non-monetary approach to work for any discount factor.
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System Model on Platforms

Two platforms Crowdspark and GasBuddy need to decide how many
samples to buy from their own crowdsourcing pool with sampling rates λ1
and λ2, and then update to their end customers through the delivery
network of bandwidth µ.
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System Model on AoI

Consider 1 platform first

i + 1 i

preempt-in

discarded

Customer Arrivals
Poi(λ)

Service Rate
Exp(µ)

We consider LCFS M/M/1 queue with preemption (Kaul et al.
(2012)).

Preemption happen within (and between) platform(s).

Status update age = completion time - generation time.

Average age for single platform:

∆ =
1

λ
+

1

µ
.
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Average AoI for Duopoly Platforms

Average age of platform 1 and platform 2 (Kaul et al. (2012)):

∆1 =
1

λ1
+

1

µ
+

λ2
λ1µ

.

∆2 =
1

λ2
+

1

µ
+

λ1
λ2µ

.

∆1 decreases with its own sampling rate λ1 and bandwidth µ, and
increases with the other platform’s λ2.

Negative network externalities due to competition on µ.
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System Model under Complete Information

Model ci as unit cost per sampling rate. Sampling cost is λici when
inviting sensors of density λi to contribute.

Both platforms have full information on their sampling costs.

Platform 1’s cost function:

π1(λ1, λ2) = ∆1(λ1, λ2) + c1λ1.

implying the tradeoff between AoI and sampling cost by deciding λ1.
Platform 2’s cost function:

π2(λ1, λ2) = ∆2(λ1, λ2) + c2λ2.
Social cost function:

π(λ1, λ2) = π1(λ1, λ2) + π2(λ1, λ2).
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Non-cooperative Static Game under Complete
Information

Non-cooperative game with equilibrium (λ∗1, λ
∗
2)

min
λ1>0

π1(λ1, λ2)

min
λ2>0

π2(λ1, λ2)

Min-social-cost problem with social optimizers (λ∗∗1 , λ
∗∗
2 )

min
λ1,λ2>0

π(λ1, λ2)

Question: equilibrium (λ∗1, λ
∗
2) versus optimal (λ∗∗1 , λ

∗∗
2 ) ?
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Competition Equilibrium and Social Optimizers

Proposition 1 (Equilibrium vs Social Optimizers under complete information)

Under complete information, the competition equilibrium (λ∗
1 , λ

∗
2 ) are the unique

solutions to

− 1

λ2
1

(1 +
λ2

µ
) + c1 = 0,

− 1

λ2
2

(1 +
λ1

µ
) + c2 = 0. (1)

Differently, the social optimizers (λ∗∗
1 , λ

∗∗
2 ), are the unique solutions to

− 1

λ2
1

(1 +
λ2

µ
) + c1 +

1

λ2µ
= 0,

− 1

λ2
2

(1 +
λ1

µ
) + c2 +

1

λ1µ
= 0. (2)

By comparing (1) and (2), we conclude competition leads over-sampling (λ∗
i ≥ λ∗∗

i for
i = 1, 2) at the equilibrium.
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Equilibrium under Complete Informatiion

Corollary 1

Equilibrium λ∗1 increases with λ∗2, and decreases with c1, c2 and µ,
respectively.

λ∗1 increases with λ∗2: competition to occupy µ.

λ∗1 decreases with µ: less competition with more bandwidth.

λ∗1 decreases with c1: avoid high samping cost.

λ∗1 decreases with c2: λ2 decreases with c2.
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Inefficiency of Competition Equilibrium under
Complete Information

Price of Anarchy (PoA):

PoA = max
c1,c2,µ

π(λ∗1, λ
∗
2)

π(λ∗∗1 , λ
∗∗
2 )
≥ 1.

We use PoA ≥ 1 to tell efficiency loss due to competition in the worst case.

Proposition 2 (Huge efficiency loss under complete information)

Price of anarchy under complete information is PoA =∞, which is
achieved when platform 1’s sampling cost c1 is infinitesimal.

Need non-monetary mechanism to remedy the huge efficiency loss!
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Our Repeated Game Approach

Platforms care benefits in long run rather than one round.

We consider how to regulate competition in long run in repeated
games with discount factor δ < 1.

Definition 1 (Non-forgiving trigger mechanism of punishment under
complete information)

In each round, recommended cooperation profile (λ̃1(δ), λ̃2(δ)) to
follow, if neither was detected to deviate from its profile in the past.

Once a deviation was found in the past, the two platforms will keep
playing the punishment/equilibrium profile (λ∗1, λ

∗
2) forever.
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Condition for No Deviation for Both Platforms

How to design (λ̃1(δ), λ̃2(δ)) to never trigger punishment?

Ideally, we want to ensure no deviation for each platform from
(λ̃1(δ), λ̃2(δ)) = (λ∗∗1 , λ

∗∗
2 ).

Platform 1’s long-term cost over all time stages without deviation:

Π1 = π1(λ∗∗1 , λ
∗∗
2 ) + δπ1(λ∗∗1 , λ

∗∗
2 ) + δ2π1(λ∗∗1 , λ

∗∗
2 ) + · · · .

Platform 1’s long-term cost over all time stages by deviating in the

first round with best response λ1 =
√

1+λ∗∗2 /µ
c1

:

Π̂1 = π1

(√
1 + λ∗∗2 /µ

c1
, λ∗∗2

)
+ δπ1(λ∗1, λ

∗
2) + δ2π1(λ∗1, λ

∗
2) + · · ·︸ ︷︷ ︸

Equilibrium as punishment

.
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Condition for No Deviation for Both Platforms
(Cont.)

No deviation for platform 1: Π1 ≤ Π̂1 is equivalent to

discount factor δ ≥ δth1 :=

(√
1+λ∗∗2 /µ

c1+
1

λ∗∗
2
µ

−
√

1+λ∗∗2 /µ
c1

)2

2λ∗∗1

(
λ∗1 −

√
1+λ∗∗2 /µ

c1

) .

Similarly, no deviation for platform 2:

discount factor δ ≥ δth2 :=

(√
1+λ∗∗1 /µ

c2+
1

λ∗∗
1
µ

−
√

1+λ∗∗1 /µ
c2

)2

2λ∗∗2

(
λ∗2 −

√
1+λ∗∗1 /µ

c2

) .

We assume c1 ≤ c2. Which platform is more likely to deviate?
Platform 1 is more likely to oversample and deviate with δth1 ≥ δth2 .
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Cooperation Profile for Large δ Regime

Large δ Regime: δ ≥ max{δth1 , δth2} = δth1 .

Both will never deviate.

Proposition 3 (Large δ Regime)

Under complete information, if δ ≥ δth1 , both platforms will follow the
perfect cooperation profile (λ̃1(δ), λ̃2(δ)) = (λ∗∗1 , λ

∗∗
2 ) all the time without

triggering the punishment profile (λ∗1, λ
∗
2).

Presenter: Shugang Hao (SUTD) eco-AoI, GDUT August 31th, 2019 26 / 47



Cooperation Profile for Large δ Regime

Large δ Regime: δ ≥ max{δth1 , δth2} = δth1 . Both will never deviate.

Proposition 3 (Large δ Regime)

Under complete information, if δ ≥ δth1 , both platforms will follow the
perfect cooperation profile (λ̃1(δ), λ̃2(δ)) = (λ∗∗1 , λ

∗∗
2 ) all the time without

triggering the punishment profile (λ∗1, λ
∗
2).

Presenter: Shugang Hao (SUTD) eco-AoI, GDUT August 31th, 2019 26 / 47



Cooperation Profile for Large δ Regime

Large δ Regime: δ ≥ max{δth1 , δth2} = δth1 . Both will never deviate.

Proposition 3 (Large δ Regime)

Under complete information, if δ ≥ δth1 , both platforms will follow the
perfect cooperation profile (λ̃1(δ), λ̃2(δ)) = (λ∗∗1 , λ

∗∗
2 ) all the time without

triggering the punishment profile (λ∗1, λ
∗
2).

Presenter: Shugang Hao (SUTD) eco-AoI, GDUT August 31th, 2019 26 / 47



Cooperation Profile Design for Medium δ Regime

δ < max{δth1 , δth2}, we cannot use (λ∗∗1 , λ
∗∗
2 ) as cooperation profile.

δth2 ≤ δ < δth1
Platform 2 will still follow social optimizer λ∗∗2 .
Platform 1 will deviate and we should redesign λ̃1(δ) to satisfy
Π1(λ̃1(δ), λ∗∗2 ) = Π̂1(λ∗1 , λ

∗
2).

Proposition 4 (Medium δ Regime)

If δth2 ≤ δ < δth1 , cooperation profile for platform 1 λ̃1(δ) satisfies:

λ̃1(δ) > λ∗∗1 : over-sample than social optimizer.

λ̃1(δ) < λ∗1 : under-sample than equilibrium.

λ̃1(δ) decreases with δ ∈ [δth2 , δth1) and eventually λ̃1(δ)→ λ∗∗1 : platform 1
cares more about future and samples more conservative.
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Cooperation Profile Design for Small δ Regime

What if δ < min{δth1 , δth2} = δth2?

Neither platforms will follow the social optimizers (λ∗∗1 , λ
∗∗
2 ).

We redesign (λ̃1(δ), λ̃2(δ)) jointly such that
Π1(λ̃1(δ), λ̃2(δ)) = Π̂1(λ∗1, λ

∗
2) for platform 1 and

Π2(λ̃1(δ), λ̃2(δ)) = Π̂2(λ∗1, λ
∗
2) for platform 2.

As δ → 0, the proposed (λ̃1(δ), λ̃2(δ)) approach (λ∗1, λ
∗
2), and the

repeated game degenerates to one-shot static game.
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Numerical Results
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Low δ regime: 0 - 0.3, Medium δ regime: 0.3 - 0.7, High δ regime: 0.7 - 1.

Cooperation profile (λ̃1(δ), λ̃2(δ)) decrease with δ and converge to
social optimizers (λ∗∗1 , λ

∗∗
2 ).

Presenter: Shugang Hao (SUTD) eco-AoI, GDUT August 31th, 2019 29 / 47



Numerical Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Discount Factor 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

C
o
o
p
e
ra

ti
o
n
 P

ro
fi
le

 f
o
r 

2
 p

la
tf
o
rm

s
 

Low δ regime: 0 - 0.3, Medium δ regime: 0.3 - 0.7, High δ regime: 0.7 - 1.

Cooperation profile (λ̃1(δ), λ̃2(δ)) decrease with δ and converge to
social optimizers (λ∗∗1 , λ

∗∗
2 ).

Presenter: Shugang Hao (SUTD) eco-AoI, GDUT August 31th, 2019 29 / 47



1 Background: crowdsourcing meets AoI

2 System Model for AoI

3 Complete information scenario

4 Incomplete information scenario
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System model under one-sided incomplete
information

Bayesian game:

Platform 1’s cost function when c1 = cH :

π1(λ1(cH), λ2) =
λ1(cH) + λ2
λ1(cH)

(
1

λ1(cH) + λ2
+

1

µ

)
+ cHλ1(cH).

Platform 1’s cost function when c1 = cL:

π1(λ1(cL), λ2) =
λ1(cL) + λ2
λ1(cL)

(
1

λ1(cL) + λ2
+

1

µ

)
+ cLλ1(cL).
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System model under one-sided incomplete
information

Unaware of cH and cL instances, platform 2’s cost function:

π2((λ1(cH), λ1(cL)), λ2) = pH ·
(
λ1(cH) + λ2

λ2

(
1

λ1(cH) + λ2
+

1

µ

))
+ (1− pH) ·

(
λ1(cL) + λ2

λ2

(
1

λ1(cL) + λ2
+

1

µ

))
+ c2λ2.
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Non-cooperative Bayesian Game under Incomplete
Information

Non-cooperative Bayesian game with equilibrium
((λ∗1(cH), λ∗1(cL)), λ∗2):

min
λ1(cH)>0

π1(λ1(cH), λ2)

min
λ1(cL)>0

π1(λ1(cL), λ2)

min
λ2>0

π2((λ1(cH), λ1(cL)), λ2)

Min-social-cost problem with social optimizers
((λ∗∗1 (cH), λ∗∗1 (cL)), λ∗∗2 ):

min
λ1(cH),λ1(cL),λ2>0

π((λ1(cH), λ1(cL)), λ2)
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Competition Equilibrium and Social Optimizers

Proposition 6 (Equilibrium vs social optimizers under incomplete information)

The competition equilibrium ((λ∗1(cH), λ∗1(cL)), λ∗2) are the unique solutions to
−

1

λ2
1(cH )

(
1 +

λ2

µ

)
+ cH = 0,

−
1

λ2
1(cL)

(
1 +

λ2

µ

)
+ cL = 0,

−
pH

λ2
2

(
1 +

λ1(cH )

µ

)
−

1 − pH

λ2
2

(
1 +

λ1(cL)

µ

)
+ c2 = 0.

Social optimizers ((λ∗∗1 (cH), λ∗∗1 (cL)), λ∗∗2 ) are the unique solutions to

−
1

λ2
1(cH )

(
1 +

λ2

µ

)
+ cH +

1

λ2µ
= 0,

−
1

λ2
1(cL)

(
1 +

λ2

µ

)
+ cL +

1

λ2µ
= 0,

pH

(
−

1

λ2
2

(
1 +

λ1(cH )

µ

)
+ c2 +

1

λ1(cH )µ

)
+ (1 − pH )

(
−

1

λ2
2

(
1 +

λ1(cL)

µ

)
+ c2 +

1

λ1(cL)µ

)
= 0.

Both platforms will over-sample at equilibrium, i.e., λ∗1(cH) ≥ λ∗∗1 (cH),

λ∗1(cL) ≥ λ∗∗1 (cL) and λ∗2 ≥ λ∗∗2 . Additionally, λ∗1(cH)/λ∗1(cL) =
√
cL/cH .
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Inefficiency of Competition Equilibrium

Price of Anarchy (PoA):

PoA = max
cL,cH ,c2,µ,pH

π((λ∗1(cH), λ∗1(cL)), λ∗2)

π((λ∗∗1 (cH), λ∗∗1 (cL)), λ∗∗2 )
≥ 1.

Proposition 7

Price of anarchy under incomplete information is PoA =∞, which is
achieved when platform 1’s smaller sampling cost cL is infinitesimal.

cL → 0, λ∗1(cL)→∞, λ∗2 →∞.

((λ∗∗1 (cH), λ∗∗1 (cL)), λ∗∗2 ) <∞.

Need non-monetary mechanism to remedy huge efficiency loss!
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Hurt with More Information for Platform 1

Question: Does platform 1 take advantage from knowing more information
about the sampling costs of both platforms?

Answer: Not exactly even in average sense!
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Hurt with More Information for Platform 1 (Cont.)

Proposition 8

Under incomplete information, the cost objective of platform 1 under each
c1 = cH realization is greater than that under complete information, and
becomes smaller under each c1 = cL realization.

Perhaps surprisingly, its average cost
pHπ1(λ∗1(cH), λ∗2) + (1− pH)π1(λ∗1(cL), λ∗2) becomes greater once

pH ≥
√
cL(
√

1 + λ̄2(cL)/µ−
√

1 + λ∗2/µ)
√
cL(
√

1 + λ̄2(cL)/µ−
√

1 + λ∗2/µ) +
√
cH(
√

1 + λ∗2/µ−
√

1 + λ̄2(cH)/µ)

Platform 2 cannot identify c1 = cH or c1 = cL, and its over-sampling
when c1 = cH forces platform 1 to over-sample.

When pH is large, this happens more often and platform 1 loses in
average sense.
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Approximate Mechanism under Incomplete Information
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New Challenge for Mechanism Design under
Incomplete Information

Even if δ is large enough, can we still use social optimizers
((λ∗∗1 (cL), λ∗∗1 (cH)), λ∗∗2 ) as in complete information scenario?

Lemma 5.1.

Given the cooperation profile (λ∗∗1 (cL), λ∗∗1 (cH)) for platform 1 under
sufficiently large δ, platform 1 will not deviate from λ∗∗1 (cL) when c1 = cL
but may deviate from λ∗∗1 (cH) when c1 = cH .

Platform 2 over-samples when c1 = cH compared to complete
information scenario.

Platform 1 benefits from choosing λ∗∗1 (cL) and sampling more than
λ∗∗1 (cH).

When sampling according to larger λ∗∗1 (cL), he will not be caught.

Need to design new ((λ̃1(cH , δ), λ̃1(cL, δ)), λ̃2(δ)) even for large δ regime!
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Approximate Profile Design under Incomplete
Information

New idea: recommend platform 1 to behave indifferently no matter
c1 = cH or c1 = cL. That is, λ̃1(cH , δ) = λ̃1(cL, δ) = λ̃1(δ).

Definition 2 (Approximate trigger mechanism of punishment under
incomplete information)

In each round, two platforms follow approximate cooperation profile
(λ̃1(δ), λ̃2(δ)) if neither was detected to deviate from tits profile in
the past.

Once a deviation was found in the past, the two platforms will keep
playing the equilibrium punishment profile ((λ∗1(cH), λ∗1(cL)), λ∗2)
forever.

What is the best design for (λ̃1(δ), λ̃2(δ))?
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Approximate Cooperation Profile

New min-social cost problem with optimal profile (λ̃1(δ), λ̃2(δ)):

min
λ1(cH ,δ),λ1(cL,δ),λ2(δ)>0

π((λ1(cH , δ), λ1(cL, δ)), λ2(δ))

s.t. λ1(cH , δ) = λ1(cL, δ) := λ̃1(δ)

Optimal approximate profile:

λ̃1(δ) =

√√√√ 1 + λ̃2(δ)/µ

pHcH + (1− pH)cL + 1
λ̃2(δ)µ

,

λ̃2(δ) =

√√√√1 + λ̃1(δ)/µ

c2 + 1
λ̃1(δ)µ

,

which proves to provide at most 2-approximation of minimum social cost
with pHcH + (1− pH)cL = c2.
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Approximate Mechanism Design under Incomplete
Information

Derive δth1 and δth2 similarly as under complete information.

Divide profile design into three different δ regimes (low, medium and
high):

High δ regime (δ ≥ δth1): both platforms follow optimal
recommendation.
Medium δ regime (δth2 ≤ δ < δth1): only one platform follows optimal
recommendation.
Low δ regime (δ < δth2): neither follows optimal recommendation.
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Numerical Results
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Low δ regime: 0 - 0.3, Medium δ regime: 0.3 - 0.7, High δ regime: 0.7 - 1

Cooperation profile (λ̃1(δ), λ̃2(δ)) decrease with δ and converge to
optimal recommended profile.
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Low δ regime: 0 - 0.3, Medium δ regime: 0.3 - 0.7, High δ regime: 0.7 - 1

Cooperation profile (λ̃1(δ), λ̃2(δ)) decrease with δ and converge to
optimal recommended profile.
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Conclusion

The first work to analyze tradeoff between AoI reduction and
sampling cost for online content platforms in the long run.

Competition between platforms when co-using content delivery
network can lead to huge efficiency loss (PoA→∞) under both
complete and incomplete info.

Under complete information, propose repeated games mechanism
with the threat of future punishment to enforce efficient cooperation
under any discount factor.

Under incomplete information, propose approximate mechanism to
negate the platform with information advantage.
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Extensions on JSAC Submission

Multi-platform scenario under complete information.

One platform with uncertain cost, multiple platforms with known cost
under incomplete information.

At most N
N−1 of minimum social cost given symmetric costs under

incomplete information.
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Extensions on JSAC Submission
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((a)) Social cost ratio between
equilibrium and optimum
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((b)) Social cost ratio between
approximate mechanism and
optimum

Figure: Empirical performance comparison between competition equilibrium,
social optimum, and our approximate mechanism here.
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Thank You! Q & A
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